Example Applications

Alessandrini, C., Scridel, D., Boitani, L., Pedrini, P., & Brambilla, M. (n.d.). Remotely sensed variables explain microhabitat selection and reveal buffering behaviours against warming in a climate-sensitive bird species. Remote Sensing in Ecology and Conservation, n/a(n/a). https://doi.org/10.1002/rse2.265

Anderson, R. O., Alton, L. A., White, C. R., & Chapple, D. G. (2022). Ecophysiology of a small ectotherm tracks environmental variation along an elevational cline. Journal of Biogeography, 49(2), 405–415. https://doi.org/10.1111/jbi.14311

Anderson, R. O., Meiri, S., & Chapple, D. G. (2022). The biogeography of warming tolerance in lizards. Journal of Biogeography, 49(7), 1274–1285. https://doi.org/10.1111/jbi.14380

Anderson, R. O., White, C. R., Chapple, D. G., & Kearney, M. R. (2022). A hierarchical approach to understanding physiological associations with climate. Global Ecology and Biogeography, 31(2), 332–346. https://doi.org/10.1111/geb.13431

Baker, D. J., Dickson, C. R., Bergstrom, D. M., Whinam, J., Maclean, I. M. D., & McGeoch, M. A. (2021). Evaluating models for predicting microclimates across sparsely vegetated and topographically diverse ecosystems. Diversity and Distributions, 27(11), 2093–2103. https://doi.org/10.1111/ddi.13398

Baur, J., Zwoinska, M., Koppik, M., Snook, R. R., & Berger, D. (2022). Heat stress reveals a fertility debt owing to postcopulatory sexual selection (p. 2022.10.31.514482). bioRxiv. https://doi.org/10.1101/2022.10.31.514482 Beukema, W., Pasmans, F., Van Praet, S., Ferri-Yáñez, F., Kelly, M., Laking, A. E., Erens, J., Speybroeck, J., Verheyen, K., Lens, L., & Martel, A. (2021). Microclimate limits thermal behaviour favourable to disease control in a nocturnal amphibian. Ecology Letters, 24(1), 27–37. https://doi.org/10.1111/ele.13616

Bütikofer, L., Anderson, K., Bebber, D. P., Bennie, J. J., Early, R. I., & Maclean, I. M. D. (2020). The problem of scale in predicting biological responses to climate. Global Change Biology, 26(12), 6657–6666. https://doi.org/10.1111/gcb.15358

Campbell-Staton, S. C., Walker, R. H., Rogers, S. A., De León, J., Landecker, H., Porter, W., Mathewson, P. D., & Long, R. A. (2021). Physiological costs of undocumented human migration across the southern United States border. Science, 374(6574), 1496–1500. https://doi.org/10.1126/science.abh1924

Carter, A., Kearney, M. R., Mitchell, N., Hartley, S., Porter, W., & Nelson, N. (2015). Modelling the soil microclimate: Does the spatial or temporal resolution of input parameters matter? Frontiers of Biogeography, 7(4), 138–154. https://doi.org/10.21425/F5FBG27849

Carter Anna L., Kearney Michael R., Hartley Stephen, Porter W. P., & Nelson Nicola J. (2018). Geostatistical interpolation can reliably extend coverage of a very high-resolution model of temperature-dependent sex determination. Journal of Biogeography, 45(3), 652–663. https://doi.org/10.1111/jbi.13152

Castelli, M. A., Georges, A., Cherryh, C., Rosauer, D. F., Sarre, S. D., Contador-Kelsall, I., & Holleley, C. E. (2021). Evolving thermal thresholds explain the distribution of temperature sex reversal in an Australian dragon lizard. Diversity and Distributions, 27(3), 427–438. https://doi.org/10.1111/ddi.13203

Cavallo, C., Dempster, T., Kearney, M. R., Kelly, E., Booth, D., Hadden, K. M., & Jessop, T. S. (2016). Predicting climate warming effects on green turtle hatchling viability and dispersal performance. Functional Ecology, 768–778. https://doi.org/10.1111/1365-2435.12389@10.1111/(ISSN)1365-2435.EndangeredSpecies

Chen, T.-Y., Richard, R., Lin, T.-E., & Huang, S.-P. (2021). Landscape forest impacts the potential activity time of an invasive lizard and its possibilities for range expansion in Taiwan under climate warming. Journal of Thermal Biology, 98, 102948. https://doi.org/10.1016/j.jtherbio.2021.102948

Deery, S. W., Rej, J. E., Haro, D., & Gunderson, Alex. R. (2021). Heat hardening in a pair of Anolis lizards: Constraints, dynamics and ecological consequences. Journal of Experimental Biology, 224(7), jeb240994. https://doi.org/10.1242/jeb.240994

Enriquez‐Urzelai, U., Kearney, M. R., Nicieza, A. G., & Tingley, R. (2019). Integrating mechanistic and correlative niche models to unravel range-limiting processes in a temperate amphibian. Global Change Biology, 25(8), 2633–2647. https://doi.org/10.1111/gcb.14673

Fitzpatrick, M. J., Zuckerberg, B., Pauli, J. N., Kearney, M. R., Thompson, K. L., Werner, L. C., & Porter, W. P. (2019). Modeling the distribution of niche space and risk for a freeze-tolerant ectotherm, Lithobates sylvaticus. Ecosphere, 10(7), e02788. https://doi.org/10.1002/ecs2.2788

Gilbert, N. A., Anich, N. M., Worland, M., & Zuckerberg, B. (2022). Microclimate complexities at the trailing edge of the boreal forest. Forest Ecology and Management, 524, 120533. https://doi.org/10.1016/j.foreco.2022.120533

Gómez-Vadillo, M., Mingarro, M., Ursul, G., & Wilson, R. J. (2022). Assessing Climate Change Exposure for the Adaptation of Conservation Management: The Importance of Scale in Mountain Landscapes. Land, 11(11), Article 11. https://doi.org/10.3390/land11112052

Greenberg, D. A., & Palen, W. J. (2021). Hydrothermal physiology and climate vulnerability in amphibians. Proceedings of the Royal Society B: Biological Sciences, 288(1945), 20202273. https://doi.org/10.1098/rspb.2020.2273

Gunderson, A. R., Riddell, E. A., Sears, M. W., & Rosenblum, E. B. (2022). Thermal Costs and Benefits of Replicated Color Evolution in the White Sands Desert Lizard Community. The American Naturalist, 199(5), 666–678. https://doi.org/10.1086/719027

Huang, S.-P., Lin, Y.-C., Lin, T.-E., & Richard, R. (2020). Thermal physiology explains the elevational range for a lizard, Eutropis longicaudata, in Taiwan. Journal of Thermal Biology, 102730. https://doi.org/10.1016/j.jtherbio.2020.102730

Kearney, M. R. (2019). MicroclimOz – A microclimate data set for Australia, with example applications. Austral Ecology, 44(3), 534–544. https://doi.org/10.1111/aec.12689

Kearney, M. R. (2020). How will snow alter exposure of organisms to cold stress under climate warming? Global Ecology and Biogeography, 29(7), 1246–1256. https://doi.org/10.1111/geb.13100

Kearney, M. R., Deutscher, J., Kong, J. D., & Hoffmann, A. A. (2018). Summer egg diapause in a matchstick grasshopper synchronizes the life cycle and buffers thermal extremes. Integrative Zoology, 13(4), 437–449. https://doi.org/10.1111/1749-4877.12314

Kearney, M. R., & Enriquez-Urzelai, U. (2022). A general framework for jointly modelling thermal and hydric constraints on developing eggs. Methods in Ecology and Evolution, n/a(n/a). https://doi.org/10.1111/2041-210X.14018

Kearney, M. R., Isaac, A. P., & Porter, W. P. (2014). Microclim: Global estimates of hourly microclimate based on long-term monthly climate averages. Scientific Data, 1, 140006. https://doi.org/doi: 10.1038/sdata.2014.6

Kearney, M. R., & Maino, J. L. (2018). Can next-generation soil data products improve soil moisture modelling at the continental scale? An assessment using a new microclimate package for the R programming environment. Journal of Hydrology, 561, 662–673. https://doi.org/10.1016/j.jhydrol.2018.04.040

Kearney, M. R., Munns, S. L., Moore, D., Malishev, M., & Bull, C. M. (2018). Field tests of a general ectotherm niche model show how water can limit lizard activity and distribution. Ecological Monographs, 88(4), 672–693. https://doi.org/10.1002/ecm.1326

Kearney, M. R., Porter, W. P., & Murphy, S. A. (2016). An estimate of the water budget for the endangered night parrot of Australia under recent and future climates. Climate Change Responses, 3(1), 14. https://doi.org/10.1186/s40665-016-0027-y

Kearney, M. R., Shamakhy, A., Tingley, R., Karoly, D. J., Hoffmann, A. A., Briggs, P. R., & Porter, W. P. (2014). Microclimate modelling at macro scales: A test of a general microclimate model integrated with gridded continental-scale soil and weather data. Methods in Ecology and Evolution, 5, 273–286. https://doi.org/doi: 10.1111/2041-210X.12148

Kearney, M. R., Simpson, S. J., Raubenheimer, D., & Kooijman, S. A. L. M. (2013). Balancing heat, water and nutrients under environmental change: A thermodynamic niche framework. Functional Ecology, 27(4), 950–966. https://doi.org/10.1111/1365-2435.12020

Laloë, J.-O., Monsinjon, J., Gaspar, C., Touron, M., Genet, Q., Stubbs, J., Girondot, M., & Hays, G. C. (2020). Production of male hatchlings at a remote South Pacific green sea turtle rookery: Conservation implications in a female-dominated world. Marine Biology, 167(5), 70. https://doi.org/10.1007/s00227-020-03686-x

Li, X., Wu, P., Ma, L., Huebner, C., Sun, B., & Li, S. (2020). Embryonic and post-embryonic responses to high-elevation hypoxia in a low-elevation lizard. Integrative Zoology, 15(4), 338–348. https://doi.org/10.1111/1749-4877.12441

Maclean, I. M. D., & Klinges, D. H. (2021). Microclimc: A mechanistic model of above, below and within-canopy microclimate. Ecological Modelling, 451, 109567. https://doi.org/10.1016/j.ecolmodel.2021.109567

Mader, S., Goldenberg, J., Massetti, F., Bisschop, K., D’Alba, L., Etienne, R. S., Clusella-Trullas, S., & Shawkey, M. D. (2022). How melanism affects the sensitivity of lizards to climate change. Functional Ecology, 36(4), 812–825. https://doi.org/10.1111/1365-2435.13993

Maino, J. L., Kong, J. D., Hoffmann, A. A., Barton, M. G., & Kearney, M. R. (2016). Mechanistic models for predicting insect responses to climate change. Current Opinion in Insect Science, 17, 81–86. https://doi.org/10.1016/j.cois.2016.07.006

Mi, C., Ma, L., Wang, Y., Wu, D., Du, W., & Sun, B. (2022). Temperate and tropical lizards are vulnerable to climate warming due to increased water loss and heat stress. Proceedings of the Royal Society B: Biological Sciences, 289(1980), 20221074. https://doi.org/10.1098/rspb.2022.1074

Mitchell, N., Hipsey, M. R., Arnall, S., McGrath, G., Bin Tareque, H., Kuchling, G., Vogwill, R., Sivapalan, M., Porter, W. P., & Kearney, M. R. (2013). Linking eco-energetics and eco-hydrology to select sites for the assisted colonization of Australia’s rarest reptile. Biology, 2(1), 1–25. https://doi.org/10.3390/biology2010001

Mitchell, N. J., Rodriguez, N., Kuchling, G., Arnall, S. G., & Kearney, M. R. (2016). Reptile embryos and climate change: Modelling limits of viability to inform translocation decisions. Biological Conservation, 204, 134–147. https://doi.org/10.1016/j.biocon.2016.04.004

Monsinjon, J. R., McQuaid, C. D., Nicastro, K. R., Seuront, L., Oróstica, M. H., & Zardi, G. I. (2021). Weather and topography regulate the benefit of a conditionally helpful parasite. Functional Ecology, 35(12), 2691–2706. https://doi.org/10.1111/1365-2435.13939

Moore, D., Stow, A., & Kearney, M. R. (2018). Under the weather?—The direct effects of climate warming on a threatened desert lizard are mediated by their activity phase and burrow system. Journal of Animal Ecology, 87(3), 660–671. https://doi.org/10.1111/1365-2656.12812

Morris, S. D., Kearney, M. R., Johnson, C. N., & Brook, B. W. (2022). Too hot for the devil? Did climate change cause the mid-Holocene extinction of the Tasmanian devil Sarcophilus harrisii from mainland Australia? Ecography, 2022(2). https://doi.org/10.1111/ecog.05799

Munro, J. T., Medina, I., Walker, K., Moussalli, A., Kearney, M. R., Dyer, A. G., Rankin, K. J., & Stuart-Fox, D. (2019). Climate is a strong predictor of near-infrared reflectance but a poor predictor of colour in butterflies. Proceedings of the Royal Society B: Biological Sciences, 286(1898). http://dx.doi.org/10.1098/rspb.2019.0234

Neel, L. K., Curlis, J. D., Kinsey, C. T., Cox, C. L., & McBrayer, L. D. (2020). Acclimatization in the physiological performance of an introduced ectotherm. Journal of Experimental Biology, 223(6), jeb201517. https://doi.org/10.1242/jeb.201517

Oyamaguchi, H. M., Vo, P., Grewal, K., Do, R., Erwin, E., Jeong, N., Tse, K., Chen, C., Miyake, M., Lin, A., & Gridi‐Papp, M. (2018). Thermal sensitivity of a Neotropical amphibian (Engystomops pustulosus) and its vulnerability to climate change. Biotropica, 50(2), 326–337. https://doi.org/10.1111/btp.12519

Parlin, A. F., Schaeffer, P. J., & Jezkova, T. (2020). Modelling the effect of environmental temperatures, microhabitat and behavioural thermoregulation on predicted activity patterns in a desert lizard across its thermally diverse distribution. Journal of Biogeography, 47(11), 2315–2327. https://doi.org/10.1111/jbi.13936

Paz, A., & Guarnizo, C. E. (2020). Environmental ranges estimated from species distribution models are not good predictors of lizard and frog physiological tolerances. Evolutionary Ecology, 34(1), 89–99. https://doi.org/10.1007/s10682-019-10022-3

Perez, T. M., & Feeley, K. J. (2020). Photosynthetic heat tolerances and extreme leaf temperatures. Functional Ecology, 34(11), 2236–2245. https://doi.org/10.1111/1365-2435.13658

Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L., & Sunday, J. M. (2019). Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature, 569(7754), 108. https://doi.org/10.1038/s41586-019-1132-4

Pirtle, E. I., Tracy, C. R., & Kearney, M. R. (2019). Hydroregulation – a neglected behavioral response of lizards to climate change? In V. Bels & A. P. Russell (Eds.), Behavior of Lizards: Evolutionary and Mechanistic Perspectives (pp. 343–374). CRC Press. https://doi.org/10.1201/9781498782739-12

Riddell, E. A., Iknayan, K. J., Hargrove, L., Tremor, S., Patton, J. L., Ramirez, R., Wolf, B. O., & Beissinger, S. R. (2021). Exposure to climate change drives stability or collapse of desert mammal and bird communities. Science, 371(6529), 633–636. https://doi.org/10.1126/science.abd4605

Riddell, E. A., Patton, J. L., & Beissinger, S. R. (n.d.). Thermal adaptation of pelage in desert rodents balances cooling and insulation. Evolution, n/a(n/a). https://doi.org/10.1111/evo.14643

Rubalcaba, J. G., Gouveia, S. F., & Olalla‐Tárraga, M. A. (2019). A mechanistic model to scale up biophysical processes into geographical size gradients in ectotherms. Global Ecology and Biogeography, 0(0). https://doi.org/10.1111/geb.12893

Rubalcaba, J. G., Gouveia, S. F., & Olalla-Tárraga, M. A. (2019). Upscaling Microclimatic Conditions into Body Temperature Distributions of Ectotherms. The American Naturalist, 000–000. https://doi.org/10.1086/702717

Rubalcaba, J. G., & Jimeno, B. (2022). Biophysical models unravel associations between glucocorticoids and thermoregulatory costs across avian species. Functional Ecology, 36(1), 64–72. https://doi.org/10.1111/1365-2435.13946

Rubalcaba, J. G., & Olalla-Tárraga, M. Á. (2020). The biogeography of thermal risk for terrestrial ectotherms: Scaling of thermal tolerance with body size and latitude. Journal of Animal Ecology, 89(5), 1277–1285. https://doi.org/10.1111/1365-2656.13181

Sachser, F., Pesendorfer, M., Gratzer, G., & Nopp-Mayr, U. (2021). Differential spatial responses of rodents to masting on forest sites with differing disturbance history. Ecology and Evolution, 11(17), 11890–11902. https://doi.org/10.1002/ece3.7955

Smith Kathleen R., Cadena Viviana, Endler John A., Porter Warren P., Kearney Michael R., & Stuart-Fox Devi. (2016). Colour change on different body regions provides thermal and signalling advantages in bearded dragon lizards. Proceedings of the Royal Society B: Biological Sciences, 283(1832), 20160626. https://doi.org/10.1098/rspb.2016.0626

Stenhouse, V., Carter, A. L., Chapple, D. G., Hare, K. M., Hartley, S., & Nelson, N. J. (2018). Modelled incubation conditions indicate wider potential distributions based on thermal requirements for an oviparous lizard. Journal of Biogeography, 45(8), 1872–1883. https://doi.org/10.1111/jbi.13363

Strangas, M. L., Navas, C. A., Rodrigues, M. T., & Carnaval, A. C. (2019). Thermophysiology, microclimates, and species distributions of lizards in the mountains of the Brazilian Atlantic Forest. Ecography, 42(2), 354–364. https://doi.org/10.1111/ecog.03330

Stubbs, J. L., Kearney, M. R., Whiting, S. D., & Mitchell, N. J. (2014). Models of primary sex ratios at a major flatback turtle rookery show an anomalous masculinising trend. Climate Change Responses, 1(1), 1–18. https://doi.org/10.1186/s40665-014-0003-3

Tang, L., Morris, W. K., Zhang, M., Shi, F., & Vesk, P. A. (2022). Exploring how functional traits modulate species distributions along topographic gradients in Baxian Mountain, North China. Scientific Reports, 12(1), Article 1. https://doi.org/10.1038/s41598-021-04210-x

Tomlinson, S. (2020). The construction of small-scale, quasi-mechanistic spatial models of insect energetics in habitat restoration: A case study of beetles in Western Australia. Diversity and Distributions, 26(8), 1016–1033. https://doi.org/10.1111/ddi.13074

Tomlinson, S., Lewandrowski, W., Elliott, C. P., Miller, B. P., & Turner, S. R. (2020). High-resolution distribution modeling of a threatened short-range endemic plant informed by edaphic factors. Ecology and Evolution, 10(2), 763–777. https://doi.org/10.1002/ece3.5933

Tourinho, L., Sinervo, B., Caetano, G. H. de O., & Vale, M. M. (2021). A less data demanding ecophysiological niche modeling approach for mammals with comparison to conventional correlative niche modeling. Ecological Modelling, 457, 109687. https://doi.org/10.1016/j.ecolmodel.2021.109687

Trew, B. T., & Maclean, I. M. D. (2021). Vulnerability of global biodiversity hotspots to climate change. Global Ecology and Biogeography, 30(4), 768–783. https://doi.org/10.1111/geb.13272

Turner, R. K., & Maclean, I. M. D. (2022). Microclimate-driven trends in spring-emergence phenology in a temperate reptile (Vipera berus): Evidence for a potential “climate trap”? Ecology and Evolution, 12(2), e8623. https://doi.org/10.1002/ece3.8623

Walker, S., Stuart-Fox, D., & Kearney, M. R. (2015). Has contemporary climate change played a role in population declines of the lizard Ctenophorus decresii from semi-arid Australia? Journal of Thermal Biology, 54, 66–77. https://doi.org/10.1016/j.jtherbio.2014.12.001

Youngblood, J. P., Cease, A. J., Talal, S., Copa, F., Medina, H. E., Rojas, J. E., Trumper, E. V., Angilletta Jr., M. J., & Harrison, J. F. (n.d.). Climate change expected to improve digestive rate and trigger range expansion in outbreaking locusts. Ecological Monographs, n/a(n/a), e1550. https://doi.org/10.1002/ecm.1550

Yuan, F. L., Freedman, A. H., Chirio, L., LeBreton, M., & Bonebrake, T. C. (2018). Ecophysiological variation across a forest-ecotone gradient produces divergent climate change vulnerability within species. Ecography. https://doi.org/10.1111/ecog.03427